

ELECTROSTATICS

Page 1

ELECTRIC CHARGE: There exist two type of charges in nature which are arbitrarily designated as Positive (+) and Negative (-). Like charges repel each other while unlike charges attract each other.

SI unit of electric charge is coulomb (C). Charge is quantized, additive and conserve.

Coulomb's Law: $F = q_1 q_2 / r^2$ where k is a constant. In SI system, in vacuum k is $9 \times 10^9 \text{ Nm}^2/\text{C}^2$.

When the same charges are placed in some material medium, the force between them is found to be less than that in vacuum. We write that

$F = \frac{1}{4\pi\epsilon} q_1 q_2 / r^2$, where ϵ is the permittivity of the medium and $\epsilon = \epsilon_0 K$, K is called Dielectric constant. The value of K depends upon the nature of the medium.

THE ELECTRIC FIELD

Electric field at any point is defined as the force experienced by a unit positive charge placed at that point.

Mathematically $E = \lim_{q \rightarrow \infty} \left(\frac{F}{q} \right)$

If E is electric field at any point, then the force experienced by a charge q at that point is $F = qE$

Field Due to a point Charge:

$$E = \frac{q}{4\pi\epsilon_0 r^2}$$

THE ELECTRIC DIPOLE: It is a system of two equal and opposite charges separated by a small distance. We define **ELECTRIC DIPOLE MOMENT** $P = 2a \times q$ where $2a$ is the length of the dipole and q is the magnitude of either charges.

Dipole in an Electric field: The net force on the dipole would be zero but it will experience a torque which tends to rotate the dipole in the direction of the applied field and is given by

$$\tau = P \times E$$

POTENTIAL ENERGY OF A DIPOLE: PE of a dipole is equal to the amount of work done in rotating the dipole from a direction perpendicular to the field to the present position i.e. $\theta_0 = 90^\circ$

$$PE (U) = - PE \cos\theta = - \mathbf{P} \cdot \mathbf{E}$$

P is a vector quantity whose direction is from $-q$ to $+q$ charge.

ELECTRIC FLUX: Consider a small area ds placed in an electric field E such that the normal to the area makes an angle θ with the direction of E . Then the electric flux passing through ds is defined as $\Delta S = E \Delta S \cos \theta = E \Delta S$

Flux is taken to be positive if the electric field lines points outwards ($\theta < 90^\circ$) and negative if they point inwards.

ELECTRIC POTENTIAL: It is defined as work done per unit charge. Denoted by V. SI unit is volt.

$$V = \text{work/Charge} = W/q$$

$$\text{Potential Difference between two points: } V_B - V_A = W_{AB} / q$$

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \text{ (Electric field is conservative).}$$

$$\text{Potential due to point charge: } E = \frac{q}{4\pi\epsilon_0 r}$$

Gauss's Law: For any closed surface

$$\Phi = Q / \epsilon_0$$

Where Q is the net charge enclosed by the surface and Φ is the electric flux.

ELECTROSTATIC SHIELDING: If there is a cavity of any shape inside the conductor, the field there will be strictly zero. Anything placed inside the cavity will be completely shielded.

CAPACITANCE

When a conductor is given some charge, its potential rises such that $Q \propto V$ OR $Q = C V$, where C is a constant known as capacitance of the conductor.

$$\text{Thus } C = \frac{Q}{V} .$$

SI unit of Capacitance is coulomb/volt which is equivalent to **1 F (farad)**.

PARALLEL PLATE CAPACITOR: It consists of two metal plates of same dimensions placed parallel to each other. If A is the area of each plate and d is the separation between the plates then capacitance of parallel plate capacitor is given by

$$C = \epsilon_0 A / d$$

COMBINATION OF CAPACITORS:

(A) SERIES COMBINATION –

The equivalent capacitance of n capacitors of capacitances $C_1, C_2, C_3, \dots, C_n$ connected in series is given by

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}$$

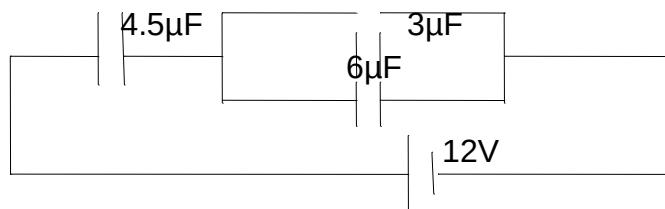
(B) PARALLEL COMBINATION:

In this case the Potential Difference across each capacitor is the same. The equivalent capacitance of n capacitors connected in parallel is given by

$$C = C_1 + C_2 + C_3 + \dots + C_n$$

ENERGY STORED IN A CAPACITOR:

When a capacitor is charged, work is done by the charging battery. This work is stored in a capacitor in the form of its Potential energy.


The Potential energy stored in a capacitor is given by $U = \frac{1}{2} QV = \frac{1}{2} CV^2 + \frac{1}{2} \frac{Q^2}{C}$

LOSS OF ENERGY WHEN TWO CHARGED CAPACITORS ARE CONNECTED IN PARALLEL: Let two capacitors C_1 and C_2 initially charged to Potentials V_1 and V_2 . The common PD across the combination is given by

$$V = \frac{\text{Total Charge}}{\text{Total Capacitance}} = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$$

$$\text{The loss of Energy } \Delta U = \frac{(C_2 Q_1 - Q_2 C_1)}{2 C_1 C_2 (C_1 + C_2)}$$

MULTIPLE CHOICE QUESTIONS

9. Energy of an electrical conductor of capacitance C , when subjected to a potential difference of V is given by:
 (a) $\frac{1}{2} CV^2$ (b) $\frac{1}{2} C^2V$ (c) CV (d) $C/2V$

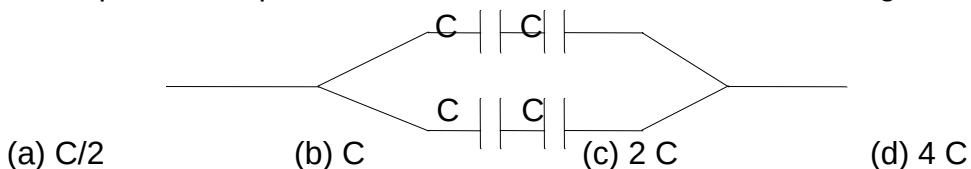
10. The SI unit of permittivity of free space is (ϵ_0) is :
 (a) $C/(N\cdot m)$ (b) $(N\cdot m)/C^2$ (c) $C^2/(N\cdot m)^2$ (d) $C^2/(n\cdot m^2)$

11. 1 volt equals
 (a) 1 J (b) $1\text{ J}/C$ (c) $1\text{ C}/J$ (d) None of these

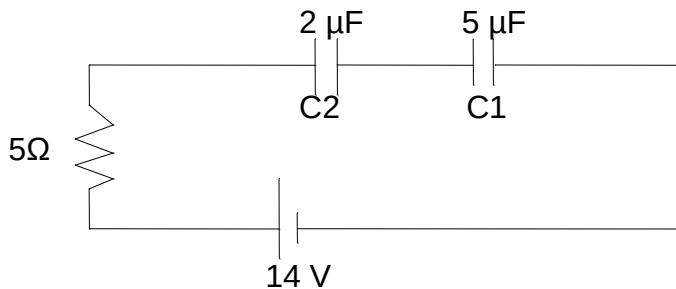
12. How many electrons will have a charge of 1 coulomb?
 (a) 6.2×10^{18} (b) 6.2×10^{19} (c) 5.2×10^{18} (d) 5.2×10^{19}

13. The work done in moving a +ve charge on an equipotential surface is
 (a) finite and +ve (b) infinite (c) finite and -ve (d) zero

14. Two charges are placed at a distance apart. If a glass slab is placed between them, force between them will
 (a) Remains same (b) increase (c) decrease (d) be zero


15. Two plates are 1 cm apart and the potential difference between them is 10 volt. The electric field between the plates is
 (a) 10 N/C (b) 250 N/C (c) 500 N/C (d) 1000 N/C

16. Three charges $2q$, $-q$ and $-q$ are located at the vertices of an equilateral triangle. At the circumcentre of the triangle
 (a) $E=0$ but $V\neq 0$ (b) $E\neq 0$ but $V=0$ (c) both E & $V=0$ (d) both E & $V\neq 0$


17. The ratio of the electric force between two electrons to the gravitational force between them is of the order of
 (a) 10^{42} (b) 10^{40} (c) 10^{36} (d) 10^{32}

18. Five identical capacitors connected in series have an equivalent capacitance of $4\text{ }\mu\text{F}$. If all of them are connected in parallel across a 400 V supply, the total energy stored in them
 (a) 2 J (b) 4 J (c) 8 J (d) 16 J

19. The equivalent capacitance of the combination shown in the figure is

20. In the given circuit in steady state

- (a) The p.d. across C1 is 10 V
- (b) The p.d. across C2 is 10 V
- (c) The charge on C1 is 20 μ C
- (d) The charge on C2 is 8 μ C

21. An electric charge is placed at the centre of a cube of side a . The electric flux through one of the face of the cube is

- (a) $q / 6\epsilon_0$
- (b) $q / \epsilon_0 a^2$
- (c) $q / 4\pi\epsilon_0 a^2$
- (d) q / ϵ_0

22. The capacitance of a parallel plate capacitor does not depend upon

- (a) area of plates
- (b) metal of plates
- (c) medium between plates
- (d) distance between the plates

23. Electric field intensity at a point inside a hollow charged spherical conductor is

- (a) zero
- (b) constant
- (c) increases with distance from the centre of the sphere
- (d) None of these

24. The space between the plates of the capacitor is filled by a liquid of dielectric constant K . The capacitance of the capacitor

- (a) Increases by a factor K
- (b) increases by a factor K^2
- (c) Decreases by a factor K
- (d) decreases by a factor K^2

25. When 10^{12} electrons are removed from a neutral metal sphere, the charge on it becomes

- (a) 16μ C
- (b) -16μ C
- (c) 32μ C
- (d) -32μ C

Answer Key

1	2	3	4	5	6	7	8	9	10
d	d	b	c	a	c	a	d	a	d
11	12	13	14	15	16	17	18	19	20
b	a	d	c	d	b	a	c	b	b,c
21	22	23	24	25					
a	b	a	a	a					

CURRENT ELECTRICITY

ELECTRIC CURRENT: If the rate of flow of charge is not constant then the current at any instant is given by $I = \frac{dQ}{dt}$

The SI unit of current is coulomb/second, is called ampere (A). In metals the current is due to motion of electrons whereas in electrolytes and ionized gases, both electrons and positive ions move in opposite direction. The direction of current is taken as the direction in which positive charges move.

ELECTROMOTIVE FORCE AND DRIFT SPEED:

To maintain the potential difference between the two ends of the conductor, work has to be done by an external source to move the charge. Such an agency is called a source of emf. Example - an electrochemical cell or a generator.

The average velocity with which the electrons move in a conductor under a potential difference is called Drift speed.

If E is the applied field, e is the charge of an electron and m is the mass of electron, τ is the time interval between successive collisions, then the drift velocity of electron is given by

$$V_d = \frac{eE\tau}{2m}$$

Ohm's Law: Physical conditions remaining unchanged, the current flowing through a conductor is directly proportional to potential difference applied across its ends i.e. $V \propto R$ or $V = IR$, where **R – resistance** of the conductor. SI unit of resistance is ohm (Ω)

V-I relation for Ohmic conductors is a straight line graph. However Ohm's law is not valid for semiconductors and electronic devices such as diodes and transistors.

RESISTANCE ABS RESISTIVITY:

$R = \rho L/A$ or $\rho = RA/L$, where ρ is called resistivity or specific resistance. It depends on the nature of the metal but Resistance depends on the dimensions of the conductor. SI unit of Resistivity is ohm.metre ($\Omega \cdot m$)

The inverse of resistivity is called conductivity denoted by σ . Its SI unit is Sm^{-1} .

$J = \sigma E$, where J is called current density.

VARIATION OF RESISTANCE WITH TEMPERATURE:

Temperature coefficient of resistance is given by (α)

$$R_t = R_0 (1 + \alpha t)$$

Where R_t and R_0 are the resistance at $t^{\circ}\text{C}$ and 0°C respectively. Alternatively we can write this equation in another form as $\alpha = (R_t - R_0) / t$

For Metals α is Positive so resistance of metals increases with temperature. For semiconductors α is negative so resistance of semiconductors decreases with increase in temperature.

COMBINATION OF RESISTORS:

(a) SERIES GROUPING:

$$R_s = R_1 + R_2 + R_3$$

(b) PARALLEL GROUPING:

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} +$$

Where R_s and R_p be the equivalent resistance in Series and Parallel grouping of three given resistors R_1 , R_2 and R_3 .

SUPERCONDUCTORS: A number of material have the property that below a certain temperature (called Critical temperature), which is generally very close to absolute zero, their resistivity suddenly drops to zero. Such materials are called **SUPERCONDUCTORS**. A current once established in a superconductor continues for a long time without any driving field.

INTERNAL RESISTANCE OF A CELL AND TERMINAL VOLTAGE:

The resistance offered by the electrolytes in the flow of current through them is called internal resistance of the cell.

Suppose a cell of emf E and internal resistance r is connected across a resistance R then current $V = E - IR$, where **V is called terminal voltage.**

KIRCHHOFF's RULES:

FIRST RULE: (JUNCTION RULE) The algebraic sum of currents meeting at a junction is always zero. Mathematically $\sum I = 0$. This rule follows the law of conservation of charge.

SECOND RULE: (LOOP RULE): The algebraic sum of the changes of potential around any loop is zero.

Mathematically $\sum IR = \sum E$

This rule follows the law of conservation of energy.

MULTIPLE CHOICE QUESTIONS

CURRENT ELECTRICITY

9. Three resistances each of $1\ \Omega$ are joined in parallel. Three such combinations are put in series. The resultant resistance is
(a) $9\ \Omega$ (b) $3\ \Omega$ (c) $1\ \Omega$ (d) $\frac{1}{3}\ \Omega$

10. A current of $5\ A$ is flowing in a wire of cross-section area $4 \times 10^{-6}\ m^2$. If the free electron density in the wire is $5 \times 10^{26}/m^3$, the drift speed of the electron is (in m/s)
(a) $\frac{1}{8}$ (b) $\frac{1}{16}$ (c) $\frac{1}{32}$ (d) $\frac{1}{64}$

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
c	c	a	d	d	d	a	c	d	d